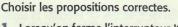
Exercices du chapitre Physique 7 : Le dipôle (R, L)


Applications directes

Étudier l'influence d'une bobine dans un circuit

(§ 1 du cours)

1. Comparer les effets d'une bobine et d'un conducteur ohmique

On réalise le circuit schématisé ci-contre. Le dipôle D peut être soit un conducteur ohmique de résistance $R = 47 \Omega$, soit une bobine de même résistance R.

- 1. Lorsqu'on ferme l'interrupteur K, la lampe brille instantanément :
- a. avec la bobine;
- b. avec le conducteur ohmique.
- 2. Le comportement de la bobine est toujours identique à celui du conducteur ohmique, car ils ont la même résistance.
- 3. La différence de comportement entre la bobine et le conducteur ohmique se manifeste juste après la fermeture de l'interrupteur K.
- 4. Quelques secondes après la fermeture de l'interrupteur K, la bobine se comporte comme le conducteur ohmique.
- 5. La résistance de la lampe en fonctionnement est égale à 13 Ω . En régime permanent, l'intensité du courant dans le circuit :
- a. vaut 0,1 A, si D est le conducteur ohmique;
- b. vaut 0,1 A, si D est la bobine;
- c. vaut 0,13 A, si D est la bobine;
- d. est nulle, si D est la bobine.

Connaître les caractéristiques d'une bobine

(§ 2 du cours)

2. Déterminer une inductance

Pour déterminer l'inductance L et la résistance r d'une bobine, un élève enregistre à l'aide d'un système d'acquisition la tension u_{AB} aux bornes de la bobine et l'intensité i du courant qui la traverse de A vers B.

- 1. Quelle est l'expression littérale de la tension u_{AB} aux bornes de la
- 2. Le tableau ci-dessous présente un extrait des mesures et des calculs réalisés.

alcuis realises.					
t (s)	0	0,005	0,01	0,03	0,05
i (A)	0,000	0,190	0,291	0,391	0,399
$\frac{\mathrm{d}i}{\mathrm{d}t}(\mathrm{A.s^{-1}})$	51,0	26,9	14,3	1,21	0,087
u _{AB} (V)	5,99	5,07	4,56	4,05	4,00

- **a.** Quelles sont les valeurs de la tension u_{AB} et de l'intensité i lorsque le régime permanent est atteint?
- b. En déduire la valeur de la résistance r de la bobine.
- c. Déduire de ces résultats la valeur de l'inductance L de la bobine.

3. Connaître les unités

(voir l'activité préparatoire A)

- 1. a. Rappeler le nom de l'unité d'inductance et son symbole.
- b. Quelle est l'origine de ce nom?
- 2. Relier cette unité aux unités de tension, d'intensité et de temps.
- 3. Montrer que la constante de temps $\tau = \frac{L}{R}$ d'un dipôle (L, R) a la dimension d'un temps.

4. Calculer la tension aux bornes d'une bobine

Un circuit électrique comporte une bobine d'inductance L = 1,0 Het de résistance $r = 10 \Omega$.

1. Représenter cette bobine, de bornes C et D, orientée de C vers D. Flécher la tension u_1 à ses bornes en convention récepteur.

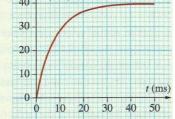
- 2. Quelle est l'expression de la tension u_L en fonction de l'intensité idu courant?
- 3. Quelle est la valeur de cette tension lorsque l'intensité i est :
- constamment nulle?
- constante et égale à 50 mA?
- 4. Durant 10 ms, cette bobine est traversée par un courant variant dans le temps suivant l'équation i(t) = 4,0 t, avec i en ampère et t en
- a. Quelle est la valeur de l'intensité à la date t = 5,0 ms?
- **b.** Quelle est la valeur de $\frac{di}{dt}$ à la date t = 5.0 ms? Préciser son unité.
- c. Quelle sera la valeur de la tension u_{L} à cette date?

5. Brancher un système d'acquisition 🥞

 $\langle (L,r) \rangle$

- 1. Reproduire le montage ci-contre et flécher les tensions u_{AB} et u_{BM} .
- 2. Quelle est la valeur de la tension uk aux bornes de l'interrupteur lors-
- fermé?
- ouvert depuis longtemps?
- 3. a. Quelles sont les expressions littérales générales des tensions u_{AB} et u_{BM} ?
- b. Que deviennent ces expressions lorsque l'interrupteur K est :
- ouvert depuis longtemps?
- fermé depuis longtemps?
- 4. a. Représenter les branchements d'un système d'acquisition informatisé permettant de visualiser la tension u_{AM} sur la voie Y_1 et la tension u_{BM} sur la voie Y_2 .
- **b.** Quels sont les calculs à programmer pour obtenir la tension u_{AB} et l'intensité i du courant?

Étudier la réponse d'une bobine à un échelon de tension


(§ 3 du cours)

7. Exploiter un graphique : établissement du courant

(voir l'exercice résolu 1)

Un circuit série comporte une bobine d'inductance L, un conducteur ohmique, un générateur de tension de f.é.m E et un interrupteur. La résistance totale du circuit est R.

On ferme le circuit et on relève les valeurs de l'intensité i du courant en fonction du temps (voir le graphique ci-contre).

- 1. Quelle est la valeur Ip de l'intensité du courant en régime per-
- 2. Proposer deux méthodes, permettant, à partir du graphique, de déterminer la valeur de la constante de temps τ. Comparer les valeurs obtenues.
- 3. La valeur de la résistance du circuit, déterminée à l'ohmmètre, est $R = 32 \Omega$. En déduire la valeur de l'inductance de la bobine.

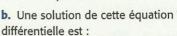
Connaître l'expression de l'énergie emmagasinée

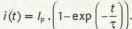
(§ 4 du cours)

11. Calculer une énergie

Une bobine d'inductance $L=0,45~\mathrm{H}$ et de résistance $r=75~\Omega$ est insérée dans un circuit.

- 1. Rappeler l'expression de l'énergie magnétique E_m emmagasinée dans une bobine. Préciser les unités.
- 2. Calculer l'énergie emmagasinée dans cette bobine lorsqu'elle est traversée par un courant d'intensité i = 20 mA.
- 3. Pour quelle valeur i' de l'intensité, l'énergie emmagasinée serat-elle égale à 3,2 mJ?


Exercices du chapitre Physique 7 : Le dipôle (R, L)


__ Utilisation des acquis

17. Établissement du courant

On considère le circuit en série représenté ci-contre. Le conducteur ohmique a une résistance $r'=100~\Omega$.

1. a. Établir l'équation différentielle traduisant l'évolution de l'intensité du courant i (t) lors de la fermeture de l'interrupteur.

Établir les expressions littérales de τ et I_p .

 L'enregistrement de l'évolution de l'intensité du courant dans le circuit a donné la courbe ci-dessous.

a. Déterminer la valeur numérique de I_p . En déduire la valeur de la résistance r de la bobine.

b. Déterminer graphiquement, de deux façons différentes, la valeur numérique de τ . En déduire l'inductance de la bobine.

3. Déterminer, pour chacune des dates $t_1 = 0$ ms, $t_2 = 1$ ms et $t_3 = 10$ ms, la valeur de :

a. l'intensité i;

b. l'énergie $E_{\rm m}$ emmagasinée dans la bobine;

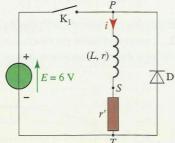
c. la tension u_{RN} aux bornes du conducteur ohmique;

d. la tension u_{PR} aux bornes de la bobine.

4. Tracer l'allure du graphique donnant l'évolution de u_{p_R} en fonction de t.

5. La courbe traduisant l'évolution de l'intensité du courant au cours du temps a été obtenue à partir de l'enregistrement de u_{p_N} .

a. Recopier le schéma et représenter les branchements à réaliser pour visualiser cette tension.


b. Expliquer comment on peut obtenir la valeur de l'intensité *i* à partir de la valeur de la tension mesurée.

19. Diode de « roue libre »

On considère le montage ci-

Le dipôle D est une diode idéale. En convention récepteur, on la représente comme sur le schéma ci-dessous.

On peut distinguer deux états de fonctionnement d'une diode idéale :

- lorsque la diode est passante, elle se comporte comme un interrupteur fermé; alors u = 0 et i > 0;

- lorsque la diode est bloquée, elle se comporte comme un interrupteur ouvert; alors i = 0 et u < 0.

1. Reproduire le schéma du montage et flécher les tensions u_{PS} et u_{ST} .

2. Établissement du courant

À la date t = 0, on ferme l'interrupteur.

a. Est-ce qu'un courant électrique circule dans la diode?

b. Établir l'expression de l'équation différentielle traduisant l'évolution de l'intensité du courant dans la bobine.

c. Vérifier que l'expression $i(t) = \frac{E}{r+r'} \left(1 - \exp\left(-\frac{t \cdot (r+r')}{L}\right) \right)$ est solution de l'équation différentielle.

d. Quelles sont les valeurs de l'intensité du courant dans la bobine et de la tension aux bornes de la bobine à la date t=0 (début du régime transitoire), puis lorsque le régime permanent est atteint?

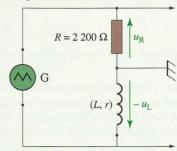
3. Rupture du courant

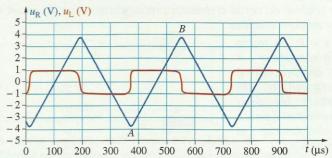
Une fois le régime permanent atteint, on ouvre l'interrupteur à une date choisie comme nouvelle origine des dates.

a. Justifier le fait que, juste après l'ouverture, un courant circule dans la bobine et dans la diode.

b. Établir l'expression de l'équation différentielle traduisant l'évolution de l'intensité du courant dans la bobine.

c. Vérifier que l'expression $i(t) = \frac{E}{r + r'} \cdot \exp\left(-\frac{t \cdot (r + r')}{L}\right)$ est solution de l'équation différentielle.


d. Quelles sont les valeurs de l'intensité du courant dans la bobine et de la tension à ses bornes à la date t = 0 (début du régime transitoire), puis lorsque le régime permanent est atteint?


4. Comparer les valeurs de l'intensité du courant juste avant et juste après l'ouverture de l'interrupteur.

22. Exploitation d'une expérience

On se propose de déterminer l'inductance d'une bobine de résistance connue $r=4~\Omega$. Pour cela, on utilise le montage cicontre, comportant un générateur délivrant une tension en « dents de scie ».

1. On enregistre les tensions $u_{\rm R}$ et $-u_{\rm L}$ et l'on fait tracer $u_{\rm R}$ et $u_{\rm B}$ en fonction du temps. On obtient le graphique ci-dessous.

La courbe rouge correspond à $u_1(t)$ et la courbe bleue à $u_2(t)$.

a. Comment obtenir le graphique représentant l'intensité i(t) du courant en fonction du temps?

b. Exprimer la tension aux bornes de la bobine en fonction de l'intensité du courant qui la traverse, de son inductance et de sa résistance.

c. Dans la suite de l'exercice, la résistance r de la bobine sera négligée. En déduire l'expression littérale de l'inductance de la bobine.

2. Les coordonnées des points A et B sont : A (375 μ s, - 3,7 V) et B (555 μ s, 3,6 V).

a. Quelles sont les valeurs de l'intensité du courant aux dates $t_A = 375 \ \mu s$ et $t_B = 555 \ \mu s$?

b. Que pouvez-vous dire de la dérivée $\frac{di}{dt}$ entre les dates t_A et t_B ?

3. Pour la clarté du graphique, la tension $u_L(t)$ a été amplifiée 10 fois

a. Quelle est la valeur de la tension $u_1(t)$ entre les dates t_A et t_B ?

b. Déterminer la valeur de l'inductance de la bobine.

c. Le fabricant indique une inductance L = 5 mH. La mesure effectuée est-elle en accord avec l'indication du fabricant?