OBJECTIF:

- Mesurer le pH de différentes solutions d'acide éthanoïque.
- Étudier l'influence de la concentration initiale et de la nature de l'acide sur le taux d'avancement final.

I. PRÉPARATION DE SOLUTIONS D'ACIDE ÉTHANOÏQUE

Rappel: la concentration molaire apportée d'un soluté A, notée C(A) est le rapport de la quantité de soluté apportée n(A)

par le volume V_s de la solution : C(A) =

 $C(A) = V_S$

On dispose d'une solution S_1 d'acide éthanoïque (ou acétique) de concentration molaire apportée $C_1 = 5,0.10^{-2}$ mol.L⁻¹.

- 1. Écrire l'équation de la réaction entre l'acide éthanoïque et l'eau. Identifier les couples acide/base mis en jeu.
- **2.** Écrire un mode opératoire pour obtenir, à partir de la solution S_1 , $V_2 = 100,0$ mL d'une solution S_2 de concentration apportée $C_2 = 5,0.10^{-3}$ mol.L⁻¹. Indiquer le matériel à utiliser.
- → Après accord du professeur, préparer la solution S₂.

II. MESURES DE PH

Le pH se détermine à l'aide de **papier-pH** ou d'un **pH-mètre**. Un pH mètre est constitué d'une **sonde** de mesure reliée à un voltmètre électronique gradué en unité de pH. Mais avant toute utilisation de cet appareil, il faut **l'étalonner**, c'est-à-dire, à l'aide de deux solutions dites étalon, de pH connu, on va régler l'appareil.

- → Relier la sonde de mesure à la console OrphyLAB.
- → Ouvrir le logiciel **PilotOrphy** qui se trouve dans le répertoire "SOFTWARE SEGUNDARIA".
- → Sélectionner le pH-mètre.
- → Étalonner le pH-mètre avec les deux solutions tampon.
- → Entre chaque mesure il faut bien rincer l'électrode avec de l'eau distillé et la secher avec du papier !!!

ATTENTION !!! LA SONDE EST TRES FRAGILE !!!

- → Mesurer le pH des 2 solutions en commençant par la solution la plus diluée et compléter le tableau ci-contre :
- 3. Pourquoi faut-il commencer par la solution la moins concentrée ?
- **4.** A-t-on pH = logC ? Comparer pH et logC.

Solutions	S ₂	S ₁
C (mol.L ⁻¹)		
рН		
- log C		

III. ÉTUDE DE LA TRANSFORMATION ENTRE L'ACIDE ÉTHANOÏQUE ET L'EAU

a. CAS DE LA SOLUTION S₁

On considère un volume V_1 quelconque de la solution S_1 d'acide éthanoïque de concentration apportée C_1 .

Équation chimique			
État du système	Avancement (mol)	Quantités de matière (mol)	
État initial	0		
État intermédiaire	х		
État final (si transfo. totale)	X _{max}		
État final (si transfo. limitée)	X _f		

- 5. Compléter littéralement le tableau d'avancement de la réaction étudiée.
- **6.** Montrer que dans le cas d'une transformation totale : $C_1 = [H_3O^+]_f$
- **7.** Montrer alors que $pH_1 = -\log C_1$ dans le cas d'une transformation totale.
- 8. Que peut-on alors en conclure, d'après la mesure de p H_1 , sur la nature de la transformation entre l'acide éthanoïque et l'eau?

b. Taux d'avancement final t_1

- **9.** Définir le taux d'avancement final noté ici τ_1 .
- **10.** Exprimer τ_1 en fonction du pH_1 et de C_1 .
- **11.** Calculer la valeur τ_1 et conclure.

c. Influence de C sur t

TS

- **12.** Compléter le tableau ci-contre. Détailler le calcul de τ_2 .
- 13. Comment varie le taux d'avancement final τ en fonction de la concentration apportée C?

Solutions	S ₂	S ₁
C (mol.L ⁻¹)		
τ (en %)		

2/2

d. Influence de la nature de l'acide sur t

On dispose de 3 solutions d'acides différents mais de même concentration apportée :

- solution S₂ d'acide éthanoïque CH₃COOH de concentration apportée : C₂ = 5,0.10⁻³ mol.L⁻¹
- solution S₃ d'acide méthanoïque HCOOH de concentration apportée : C₃ = 5,0.10⁻³ mol.L⁻¹
- solution S₄ de chlorure d'ammonium (NH₄⁺, Cl⁻) de concentration apportée : C₄ = 5,0.10⁻³ mol.L⁻¹.
- \rightarrow Mesurer le pH des solutions S_3 et S_4 et compléter les deux premières lignes du tableau.

Solutions	S ₂	S ₃	S ₄
C (mol.L ⁻¹)			
рН			
τ (en %)			

- **14.** Écrire les équations des réactions entre les acides des solutions S_3 et S_4 et l'eau (pour S_4 l'ion Cl est spectateur). Préciser les couples acide / base mis en jeu dans chacune des réactions.
- **15.** Déterminer les valeurs des taux d'avancement final τ. Compléter le tableau.
- **16.** À concentration égale, le taux d'avancement final τ dépend-il de la nature de l'acide ?
- 17. À concentration égale, quel est l'acide dont la réaction l'eau conduit à un équilibre le plus avancé dans le sens direct ? Justifier.