Fiche Méthode

Comment déterminer, par volumétrie gazeuse, la composition d'un système?

Établir l'équation de la réaction d'oxydoréduction entre les ions dichromate $\operatorname{Cr_2O_7^{2-}}$ (aq) et le butanal $\operatorname{CH_3-}(\operatorname{CH_2})_2-\operatorname{CHO}(\ell)$ en milieu acide.

Couples oxydant / réducteur : $Cr_2O_7^{2-}$ (aq) / Cr_3^{3+} (aq) et $CH_3 - (CH_2)_2 - CO_2H$ (aq) / $CH_3 - (CH_2)_2 - CHO$ (aq)

- → Établir les demi-équations d'oxydoréduction correspondant aux couples oxydant / réducteur mis en jeu suivant la méthode exposée au paragraphe 1.3 page 23 :
 - 1. Écriture de la demi-équation du couple

$$Cr_2O_7^{2-}$$
 (aq) / Cr^{3+} (aq)
 $Cr_2O_7^{2-}$ (aq) + $n e^- = Cr^{3+}$ (aq)

2. Conservation de l'élément chrome :

$$Cr_2O_7^{2-}$$
 (aq) + $n e^- = 2 Cr^{3+}$ (aq)

3. Conservation de l'élément oxygène à l'aide de deux molécules d'eau qui constituent le solvant :

$$Cr_2O_7^{2-}$$
 (aq) + $n e^- = Cr^{3+}$ (aq) + $7 H_2O(\ell)$

4. Conservation de l'élément hydrogène à l'aide d'ions hydrogène hydratés H⁺ (aq) :

$$Cr_2O_7^{2-}$$
 (aq) + 14 H⁺ (aq) + ne^- = 2 Cr^{3+} (aq) + 7 H₂O (ℓ)

5. Conservation de la charge à l'aide d'électrons :

$$Cr_2O_7^{2-}$$
 (aq) + 14 H⁺ (aq) + 6 e⁻ = 2 Cr³⁺ (aq) + 7 H₂O (ℓ)

1. Écriture de la demi-équation du couple

$$\label{eq:ch3-ch4} \begin{array}{l} {\rm CH_3-(CH_2)_2-CO_2H~(aq)~/~CH_3-(CH_2)_2-CHO~(aq)} \\ {\rm not\acute{e}~\it R-CO_2H~(aq)~/~\it R-CHO~(aq)}: \end{array}$$

$$R - CO_2H (aq) + n e^- = R - CHO (aq)$$

2. Conservation de l'élément oxygène à l'aide de molécules d'eau :

$$R - CO_2H (aq) + n e^- = R - CHO (aq) + H_2O (aq)$$

3. Conservation de l'élément hydrogène à l'aide d'ions hydrogène hydratés H⁺ (aq) :

$$R - CO_2H$$
 (aq) + 2 H⁺ (aq) + $n e^- = R - CHO$ (aq) + H_2O (ℓ)

4. Conservation de la charge à l'aide d'électrons :

$$R-CO_2H$$
 (aq) + 2 H⁺ (aq) + 2 e⁻ = $R-CHO$ (aq) + H₂O (ℓ)

→ Écrire ces demi-équations de telle façon que les ions dichromate et le butanal soient les réactifs :

$$Cr_2O_7^{2-}$$
 (aq) + 14 H⁺ (aq) + 6 e⁻ = 2 Cr^{3+} (aq) + 7 H₂O (ℓ)
 R -CHO (aq) + H₂O (ℓ) = R -CO₂H (aq) + 2 H⁺ (aq) + 2 e⁻

→ Combiner ces demi-équations de telle façon que le nombre d'électrons cédés par le réducteur R-CHO (ℓ) soit égal au nombre d'électrons captés par l'oxydant Cr₂O₇²⁻ (aq) :

Le nombre d'électrons échangés, ici $6 = 3 \times 2$, est le plus petit commun multiple des nombres d'électrons échangés dans les demi-équations considérées :

$$1 \times [Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- = 2 Cr^{3+}(aq) + 7 H_2O(\ell)]$$

$$3 \times [R-CHO(aq) + H_2O(\ell) = R-CO_2H(aq) + 2 H^+(aq) + 2 e^-]$$

$$Cr_2O_7^{2-}$$
 (aq) + 14 H⁺ (aq) + 3 R-CHO (aq) + 3 H₂O (ℓ) = 2 Cr³⁺ (aq) + 7 H₂O (ℓ) + 3 R-CO₂H (aq) + 6 H⁺ (aq)

→ Simplifier l'équation en faisant le bilan des espèces qui figurent des deux côtés du signe égal :

8 H⁺ (aq) 4 H₂O (
$$\ell$$
) Cr₂O₇²⁻ (aq) + 14 H⁺ (aq) + 3 R-CHO (aq) + 3 H₂O (ℓ) = 2 Cr³⁺ (aq) + 7 H₂O (ℓ) + 3 R-CO₂H (aq) + 6 H⁺-(aq)

$$Cr_2O_7^{2-}$$
 (aq) + 8 H⁺ (aq) + 3 R-CHO (aq) = 2 Cr³⁺ (aq) + 4 H₂O (ℓ) + 3 R-CO₂H (aq)

→ Vérifier que les éléments et la charge sont conservés.

Soit: