4. Le microscope

4.1. Modélisation d'un microscope

Un microscope comporte un **objectif**, modélisé par une **lentille convergente** de distance focale f_1 , et un **oculaire**, modélisé par une **lentille convergente** de distance focale f_2 (\Rightarrow doc. 16).

 F_1 et F_1' désignent les foyers objet et image de l'objectif. F_2 et F_2' désignent les foyers objet et image de l'oculaire. La distance focale d'un objectif est nettement plus courte que celle de l'oculaire: elle est de l'ordre du millimètre. L'intervalle (ou tirage) optique Δ est égal à la distance $F_1'F_2$. La valeur de Δ est grande devant celles de f_1' et f_2' .

4.2. Le condenseur

Il est en général constitué d'un miroir concave, qui concentre la lumière vers la préparation disposée sur la platine.

4.3. Construction graphique

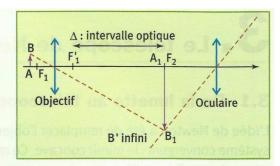
Soit un objet AB situé près de l'objectif. Son image A'B' par le microscope est à l'infini (doc. 17).

L'image intermédiaire A_1B_1 de AB par l'objectif est perpendiculaire à l'axe optique et A_1 est en F_2 . A_1B_1 est un objet pour l'oculaire et l'image définitive A'B' est à l'infini. A' est à l'infini dans la direction de l'axe optique. La direction de B' est définie par l'angle θ' (\Rightarrow doc. 17).

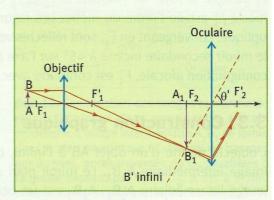
4.4. Caractéristiques optiques du microscope

Comme pour la loupe, on définit le grossissement standard par le rapport $G=\theta'/\theta_{\rm pp}$. θ' est le diamètre apparent de l'image définitive A'B' et $\theta_{\rm pp}=\frac{{\sf AB}}{D_{\rm pp}}$ le diamètre apparent de AB à une distance $D_{\rm pp}=25$ cm. Comme $\theta'=\frac{{\sf A}_1{\sf B}_1}{f_2'}$ et ${\sf A}_1{\sf B}_1=\gamma_{\rm ob}$. AB où $\gamma_{\rm ob}$ est le grandissement de

l'objectif,
$$G = \gamma_{ob} \cdot \frac{AB}{f_2'} \cdot \frac{D_{PP}}{AB} = \gamma_{ob} \cdot \frac{D_{PP}}{f_2'}$$
 soit $G = \gamma_{ob} \cdot G_{oc}$.

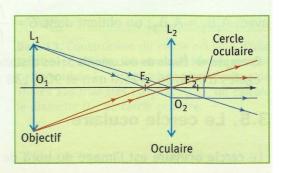

Le grossissement standard du microscope est le produit du grandissement de l'objectif par le grossissement de l'oculaire. Le constructeur indique sur l'oculaire son grossissement $G_{\rm oc}$ et sur l'objectif son grandissement $\gamma_{\rm ob}$.

4.5. Le cercle oculaire


Le cercle oculaire d'un microscope est l'image du bord circulaire de l'objectif par l'oculaire.

Le diamètre D_{co} du cercle oculaire s'obtient à partir de sa construction en considérant les triangles de sommet F_2 (\Rightarrow doc. 18):

$$D_{co} = D_{ob} \cdot \frac{f_2'}{O_1 F_2}$$
 où D_{ob} désigne le diamètre de l'objectif.


Doc. 16. Microscope modélisé par deux lentilles minces. La distance entre F₁, foyer image de l'objectif, et F₂, foyer objet de l'oculaire, définit l'intervalle optique du microscope. L'image définitive de A est à l'infini, dans la direction de l'axe optique du microscope.

Doc. 17. Construction des images et marche de rayons lumineux dans un microscope modélisé. L'image définitive de A par le microscope est à l'infini dans la direction de l'axe optique.

REMARQUE

un objet AB observé à travers un microscope de grossissement G apparaît sous un diamètre apparent $\theta' = G$. AB/ D_{pp} . Ce diamètre apparent est celui d'un objet de taille G. AB vu à l'œil nu à une distance $D_{pp} = 25$ cm.

Doc. 18. Construction du cercle oculaire d'un microscope modélisé.