Lycée Jean d'Alembert / Chili

L'analyse dimensionnelle permet de déterminer la dimension d'une grandeur et donc d'en déduire son unité. Elle permet également de vérifier l'exactitude d'une formule.

I. LE SYSTÈME INTERNATIONAL D'UNITÉS (SI) ET LA DIMENSION D'UNE GRANDEUR

- Le Système international d'unités (SI) définit **sept unités de base** associées à **sept grandeurs de base** et indépendantes. Chaque unité possède en outre un symbole.
- A Par convention, toutes les grandeurs sont organisées selon un système de dimensions. Chacune des sept grandeurs de base a sa propre dimension, représentée symboliquement par une lettre majuscule.

Grandeur de base	Symbole de la dimension	Unité de base	Symbole
longueur	L	mètre	m
masse	M	kilogramme	kg
temps	Т	seconde	S
courant électrique	I	ampère	А
température	Θ	kelvin	K
quantité de matière	N	mole	mol
intensité lumineuse	J	candela	cd

- ▲ Toutes les autres grandeurs sont des **grandeurs dérivées**. Les dimensions des grandeurs dérivées se déterminent à partir des dimensions des sept grandeurs de base et des équations de la physique.
- ▲ La dimension d'une grandeur G se note entre crochets : [G]. Si [G] = 1, la grandeur est sans dimension.
- 1. Déterminer la dimension d'une surface.
- 2. Déterminer la dimension d'une vitesse.
- 3. Déterminer la dimension d'une masse volumique.

II. DE LA DIMENSION À L'UNITÉ

- On peut déterminer l'unité de n'importe quelle grandeur à partir de sa dimension.
- Certaines unités dérivées portent un autre nom. Une force s'exprime, par exemple, en newton (N).

Grandeur	Dimension	Unité de base (SI)	Autre nom
force	M.L.T ⁻²	kg.m.s ⁻²	newton (N)
fréquence	T ⁻¹	s ⁻¹	hertz (Hz)
pression	M.L ⁻¹ .T ⁻²	kg.m ⁻¹ .s ⁻²	pascal (Pa)
énergie	$M.L^2.T^{-2}$	kg.m ² .s ⁻²	joule (J)
puissance	$M.L^2.T^{-3}$	kg.m ² .s ⁻³	watt (W)
charge électrique	I.T	A.s	coulomb (C)
tension électrique	$M.L^{2}.T^{-3}.I^{-1}$	kg.m ² .s ⁻³ .A ⁻¹	volt (V)
résistance électrique	M.L ² .T ⁻³ .I ⁻¹	kg.m ² .s ⁻³ .A ⁻²	ohm (Ω)

Remarque : les grandeurs sans dimension (densité, indice de réfraction...) n'ont pas d'unité, à l'exception des angles qui, bien que sans dimension, s'exprime en radian (rad).

4. Retrouver l'expression en unité de base de la force.

- 5. Même question pour l'énergie.
- **6.** Sachant que : F = qE et $E = \frac{U}{d}$ avec U la tension, E le champ électrique et d la distance, retrouver l'expression en unités de base du volt.
- **7.** Sachant que la constante de Planck vaut : $h = 6,626~070 \cdot 10^{-34}~J.s$, est-elle exprimée dans les unités SI ? Si non l'exprimer dans les unités de base du SI.
- **8.** Sachant que la constante des gaz parfaits vaut : R = 8,314 462 J.K⁻¹.mol⁻¹, est-elle exprimée dans les unités SI ? Si non l'exprimer dans les unités de base du SI.

III. ANALYSE DIMENSIONNELLE D'UNE FORMULE

▲ L'analyse dimensionnelle permet de vérifier qu'une formule est **homogène**, c'est-à-dire que les deux membres de la formule ont la même dimension. **Dans le cas contraire**, **la formule est nécessairement fausse!**

Exemple:

On veut vérifier que la formule de la force d'attraction gravitationnelle $F = G \frac{m.m'}{d^2}$, avec $G = 6,67.10^{-11} \text{ N.m}^2 \text{.kg}^{-2}$, est homogène.

Pour la force : $[F] = N = M.L.T^{-2}$

Pour la formule :
$$\left[G \frac{m.m'}{d^2}\right] = \frac{[G][m][m']}{[d]^2} = \frac{N.L.L}{L^2} = N = M.L.T^2$$

Donc la formule est homogène.

- 9. À l'aide de l'expression du poids retrouver les unités de l'intensité du champ de pesanteur.
- **10.** L'intensité sonore est équivalente à la puissance d'un son par unité de surface. Déterminer l'unité de l'intensité sonore dans le SI.
- **11.** Une équation indique que : $a + \frac{k}{m}v = g$ avec g l'intensité du champ de pesanteur, déterminer l'unité de a et celle de k dans le SI.

EXERCICES

12. Retrouver l'unité de a dans les cas suivants :

a.
$$a = \frac{b}{c^2} \times d$$
 Avec: $b \in m$; $c \in kg$; $d \in kg$

b.
$$a = \frac{b \times d}{c^2}$$
 avec: b en m/s; c en m; d en m/s

c.
$$a = b \times \frac{c^2}{d \times e}$$
 avec: b en kg; c en L/kg; d en L; e en L/kg

- **13.** On sait que $a = b^2 \times (c/d)$ avec b = 200 cm, c = 0.50 N·m⁻¹ et d = 4.0 m. Retrouver l'unité et la valeur de a.
- **14.** Puissance et énergie :
 - a. Quelle est la relation qui lie la puissance P au travail W?
 - b. En déduire une expression possible du joule en fonction de la seconde et du watt.
 - **c.** Rechercher alors la correspondance entre le kWh et le J.